Study: Mapping crystal shapes could fast-track 2D materials

Jeff Falk
713-348-6775
jfalk@rice.edu

Jade Boyd
713-348-6778
jadeboyd@rice.edu

Study: Mapping crystal shapes could fast-track 2D materials

Experts call for global effort to clear hurdles to mass production

HOUSTON – (July 27, 2020) – Materials scientists at Rice University and the University of Pennsylvania are calling for a collective, global effort to fast-track the mass production of 2D materials like graphene and molybdenum disulfide.

In a perspective article published online in Materials Today, journal editor-in-chief Jun Lou and colleagues make a case for a focused, collective effort to address the research challenges that could clear the way for large-scale mass production of 2D materials.

crystal shapes of 2D transition metal dichalcogenides as imaged with a scanning electron microscope

An array of crystal shapes of 2D transition metal dichalcogenides as imaged with a scanning electron microscope. (Image courtesy of MSNE/Rice University)

Lou and fellow Rice materials scientists Ming Tang, Jing Zhang and Fan Wang joined Penn’s Vivek Shenoy in describing the potential transformation in 2D materials technology that could result from a systematic, communitywide effort to map the shapes of the 2D crystals that are being grown in labs worldwide via a process known as chemical vapor deposition (CVD).

“Like snowflakes in nature, 2D crystals exhibit a rich variety of morphologies under different growth conditions,” they wrote.

Mapping these unique crystal patterns and compiling the maps in a global database, alongside the recipes for creating each pattern, could unlock a wealth of information “for understanding, diagnosing and controlling the CVD process and environment for 2D material growth,” the researchers wrote.

CVD is a commonly used process for creating thin films, including commercially important materials in the semiconductor industry. In a typical CVD reaction, a flat sheet of material called a substrate is placed in a reaction chamber and gases are flowed through the chamber in such a way that they react and form a solid film atop the substrate.

One goal of the field is developing computer software that can accurately predict the properties of a thin film that will result from the mixing of specific reactant gases under specific conditions. Creating such models is complicated by both an incomplete understanding of the physical and chemical processes that take place during CVD and by the existence of dozens of CVD reactor formats.

A Nakaya-like diagram of 2D crystal shapes of molybdenum disulfide produced via chemical vapor deposition (left) and a complete morphology diagram of molybdenum sulfide (right)

Inspired by the work of Japanese snowflake researcher Ukichiro Nakaya, materials scientists from Rice University the University of Pennsylvania created a Nakaya-like diagram of 2D crystal shapes of molybdenum disulfide produced via chemical vapor deposition (left) and a complete morphology diagram of molybdenum sulfide (right). (Image courtesy of MSNE/Rice University)

Cataloging the shape of crystals produced by CVD experiments could provide materials scientists with important information about their synthesis, in much the same way that mineralogists retrieve valuable clues about the history of Earth based on examination of naturally occurring crystal structures, Lou and colleagues suggested.

“Take the beautiful snowflakes as an example,” the authors wrote. “A perhaps surprising fact to many is that snow crystals can exhibit many different categories of shapes, which depend on the temperature and water supersaturation of the atmosphere in which they are formed.”

The Japanese scientist Ukichiro Nakaya, through extensive observations of snowflakes in both nature and the laboratory, developed a figure known as the Nakaya diagram to help decipher the information in snowflakes. By examining the shapes in a snowflake, and seeing where those shapes lie on Nakaya’s diagram, scientists can determine the exact atmospheric conditions that produced the snowflake, which Nakaya poetically referred to as “a letter from the sky.”

Inspired by Nakaya’s work, Lou and colleagues created a Nakaya-like diagram of 2D crystal patterns that have been produced via CVD and demonstrated how it and other morphology diagrams could be used to infer clues about process variables like gas flow rates and heating temperatures that produced each pattern.

Thanks to advances in real-time imaging and in automated systems that can produce large datasets of crystal structures, the authors said there is “real potential for morphology diagram development to become a common practice and serve as a cornerstone of crystal growth.”

Lou, Tang, Zhang and Wang are members of Rice’s Department of Materials Science and NanoEngineering. Lou is a professor and associate department chair. Tang is an assistant professor. Zhang is a postdoctoral research associate, and Fang is a graduate student. Shenoy is Penn’s Eduardo D. Glandt President’s Distinguished Professor of Materials Science and Engineering.

The research was supported by the Welch Foundation (C-1716), the National Science Foundation (IIP-1539999) and the Department of Energy (DE-SC0019111).

-30-

Links and resources:

The DOI of the Materials Today paper is: 10.1016/j.mattod.2020.06.012

A copy of the paper is available at: https://doi.org/10.1016/j.mattod.2020.06.012

High-resolution IMAGES are available for download at:

https://news.rice.edu/files/2020/07/0723_MORPHOLOGIC-dia-lg.jpg
CAPTION: Inspired by the work of Japanese snowflake researcher Ukichiro Nakaya, materials scientists from Rice University the University of Pennsylvania created a Nakaya-like diagram of 2D crystal shapes of molybdenum disulfide produced via chemical vapor deposition (left) and a complete morphology diagram of molybdenum sulfide (right). (Image courtesy of MSNE/Rice University)

https://news.rice.edu/files/2020/07/0723_MORPHOLOGIC-shapes-lg.jpg
CAPTION: An array of crystal shapes of 2D transition metal dichalcogenides as imaged with a scanning electron microscope. (Image courtesy of MSNE/Rice University)

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews.

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 4 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

About Jade Boyd

Jade Boyd is science editor and associate director of news and media relations in Rice University's Office of Public Affairs.