Theory for one type of superconductor solves puzzle in another

David Ruth

Jade Boyd

Theory for one type of superconductor solves puzzle in another

‘Orbital-selective pairing’ theory applied to first ‘heavy fermion’ superconductor

HOUSTON — (May 8, 2018) — A 2017 theory proposed by Rice University physicists to explain the contradictory behavior of an iron-based high-temperature superconductor is helping solve a puzzle in a different type of unconventional superconductor, the “heavy fermion” compound known as CeCu2Si2.

An international team from the U.S., China, Germany and Canada reported the findings this week in the Proceedings of the National Academy of Sciences (PNAS). The study focused on a cerium, copper and silicon composite whose strange behavior in 1979 helped usher in the multidisciplinary field of quantum materials.

Magnet levitating atop an unconventional superconductor

Stable levitation of a magnet atop an unconventional high-temperature superconductor. (Image courtesy of Julien Bobroff, Frederic Bouquet/LPS Orsay, France)

That year, a team led by Max Planck Institute’s Frank Steglich, a co-author on the PNAS paper, found that CeCu2Si2 became a superconductor at extremely cold temperatures. The mechanism of superconductivity couldn’t be explained by existing theory, and the finding was so unexpected and unusual that many physicists initially refused to accept it. The 1986 discovery of superconductivity at even higher temperatures in copper ceramics crystalized interest in the field and came to dominate the career of theoretical physicists like Rice’s Qimiao Si, a PNAS study co-author and the Harry C. and Olga K. Wiess Professor of Physics and Astronomy.

Si, whose decadeslong collaboration with Steglich has led to almost two dozen peer-reviewed studies, said, “In my wildest dreams, I had not thought that the theory that we proposed for the iron-based superconductors would come back to the other part of my life, which is the heavy-fermion superconductors.”

Heavy fermions, like high-temperature superconductors, are what physicists call quantum materials because of the key role that quantum forces play in their behavior. In high-temperature superconductors, for example, electrons form pairs and flow without resistance at temperatures considerably warmer than those needed for conventional superconductivity. In heavy fermions, electrons appear to be thousands of times more massive than they should.

In 2001, Si, who also directs the Rice Center for Quantum Materials (RCQM), offered a pioneering theory that these phenomena arise at critical transition points, tipping points where changes in pressure or other conditions bring about a transition from one quantum state to another. At the tipping point, or “quantum critical point,” electrons can develop a kind of split personality as they attempt to straddle the line between states.

Qimiao Si

Qimiao Si (Photo by Jeff Fitlow/Rice University)

The case of superconductivity illustrates how this can play out. In a normal copper wire, electrical resistance arises when flowing electrons jostle and bump against atoms in the wire. Each bump costs a small amount of energy, which is lost to heat. In superconductors, the electrons avoid this loss by pairing up and flowing in unison, without any bumps.

Because electrons are among the most antisocial of subatomic particles, they repel one another and pair up only in extraordinary circumstances. In the case of conventional superconductors, tiny variations in the spacing between atoms in a supercooled wire can coax the electrons into a marriage of convenience. The mechanism in unconventional superconductors is different.

“Our unifying understanding is that if two electrons work really hard to repel one other, there can still be an attractive force,” Si said. “If I am moving because I don’t like being close to you, and you are doing the same, and yet we cannot be too far apart, it becomes a kind of dance. The pairs in high-temperature superconductors move in relation to one another, not unlike two dance partners that spin, even as they move together across the dance floor.”

The 2017 theory put forward by Si and then-graduate student Emilian Nica, now a postdoctoral research associate at the University of British Columbia’s Quantum Materials Institute, posited that selective pairing within atomic orbitals could explain some puzzling experimental results from some of the highest-temperature superconductors, alkaline iron selenides.

Emilian Nica

Emilian Nica (Image courtesy of E. Nica)

Some experiments had shown that the pairs in alkaline iron selenides behaved as if they had an angular momentum of zero, which physicists refer to with the term s-wave, while other experiments indicated the pairs had an angular momentum of two, which physicists call d-wave. This difference is profound because angular momentum is a fundamental identifier for electrons. Just as apples and oranges are found in different bins at the grocery story, s-wave and d-wave pairings don’t mix and are found in different materials.

“What Nica’s thesis introduced was that you can have a superconducting state in which electron pairs associated with one orbital of a subshell are very different from those of another closely related orbital in the same subshell because they have an opposite sign,” Si said.

“The reason we proposed this multi-orbital pairing state was because measurements of some things, like magnetic responses, would show that the alkaline iron selenides had canonical d-wave features, and other measurements, like angular resolved photo emission, revealed attributes associated with s-wave superconductors.

“The experiments in the iron-based superconductor had already been done, and we offered an explanation, a pairing state that was both stable and robust, and yet had all these seemingly contradictory properties that were experimentally observed.”

When 2017 experiments in Japan revealed some puzzling properties in CeCu2Si2, Si told Steglich that the orbital-selective theory might be able to account for them. Together, they joined forces with the experimental team of physicist Huiqiu Yuan, deputy director of the Center for Correlated Matter at Zhejiang University in Hangzhou, China, to test the idea.

RCQM wordmark

The Rice Center for Quantum Materials is a multidisciplinary effort to solidify Rice University’s leadership in the exploration of high-temperature superconductors and other exotic materials.

Si and Nica’s theory predicted that experiments would reveal a specific set of seemingly contradictory measurements from CeCu2Si2, provided the material could be cooled to a temperature even colder than the tipping point that brings about superconductivity. Yuan’s group performed the experiments and confirmed the prediction.

“Historical evidence has always been that the pairing in this material is d-wave,” Nica said. “But the experiments confirmed that indeed, despite all the overwhelming evidence that it is d-wave, it has a feature called ‘fully opened gaps’ that is normally associated with s-wave superconductors. Ours is the only theory offered so far that can account for this.”

Si said, “It’s enormously satisfying on several levels. One is that while condensed-matter physics offers many materials that can host fascinating properties, we ultimately are seeking unifying principles, especially as theorists. I have actively searched for these unifying principles for years, but we weren’t actively seeking a unifying explanation when we proposed this theory. To see it applied, to such effect, in another completely unexpected setting was a real surprise.”

Steglich, founding director emeritus of the Max Planck Institute for Chemical Physics of Solids in Dresden, Germany, directs the Center for Correlated Matter at Zhejiang. Both the Zhejiang and Dresden teams are partners in the Rice Center for Quantum Materials. RCQM leverages global partnerships and the strengths of more than 20 Rice research groups to address intriguing and important questions related to quantum materials. Elevating research achievement and extending Rice’s reach and impact through international engagements are among the goals of Rice’s Vision for the Second Century, Second Decade (V2C2).

Additional co-authors include Guiming Pang, Michael Smidman, Jinglei Zhang, Lin Jiao, Zongfa Weng, Ye Chen, Wenbing Jiang, Yongjun Zhang, Wu Xie, Hirale Jeevan and Hanoh Lee, all of Zhejiang University, and Philipp Gegenwart of the University of Augsburg.

The research was supported by the National Key R&D Program of China, the National Natural Science Foundation of China, the Science Challenge Project of China, the National Science Foundation, the Robert A. Welch Foundation, the Gordon and Betty Moore Foundation, the Department of Energy and the Sino-German Cooperation Group on Emergent Correlated Materials.


High-resolution IMAGES are available for download at:
CAPTION: Qimiao Si (Photo by Jeff Fitlow/Rice University)
CAPTION: Emilian Nica (Image courtesy of E. Nica)
CAPTION: Stable levitation of a magnet atop an unconventional high-temperature superconductor. (Image courtesy of Julien Bobroff, Frederic Bouquet/LPS Orsay, France)
CAPTION: The Rice Center for Quantum Materials is a multidisciplinary effort to solidify Rice University’s leadership in the exploration of high-temperature superconductors and other exotic materials. (Image courtesy of Rice University)

The DOI of the PNAS paper is: 10.1073/pnas.1720291115

A copy of the paper is available at:

More information about RCQM is available at:

Related research from Rice:

Rice U. physicists discover new type of quantum material — Dec. 18, 2017

Entropy landscape sheds light on quantum mystery — May 11, 2017

Physicists probe magnetic fluctuations in heavy fermion — June 29, 2016

Evidence mounts for quantum criticality theory — Jan. 30, 2015

Rice launches Center for Quantum Materials — Sept. 30, 2014

Study probes link between magnetism, superconductivity — Dec. 13, 2010

Quantum fractals at the border of magnetism — July 28, 2010

This release can be found online at

Follow Rice News and Media Relations via Twitter @RiceUNews

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to

About Jade Boyd

Jade Boyd is science editor and associate director of news and media relations in Rice University's Office of Public Affairs.