Rice U. tech will power first fully programmable wireless network

Jeff Falk
713-348-6775
jfalk@rice.edu  

Jade Boyd
713-348-6778
jadeboyd@rice.edu

Rice U. tech will power first fully programmable wireless network

Rice, TSU, Michigan, U. of U. partner on city-scale wireless test bed in Salt Lake City

HOUSTON — (April 9, 2018) — Rice University researchers will help create the world’s first fully programmable and observable wireless communications network in Salt Lake City as part of a national effort to prepare for a rapidly approaching time when virtually everything will demand wireless data.

Massive MIMO base station at Rice

The POWDER test bed in Salt Lake City will include multi-user, multiple-input, multiple-output technology, or massive MIMO, like this 80-antenna base station developed at Rice University. (Photo by R. Doost-Mohammady/Rice University)

Rice’s Reconfigurable Ecosystem for Next-gen End-to-end Wireless (RENEW) technology will underlie a city-scale wireless test platform for telecoms, tech companies and research institutions announced today by the University of Utah. The Platform for Open Wireless Data-driven Experimental Research (POWDER) will allow wireless researchers, equipment makers and application developers to conduct tests with up to 40,000 users over a 5-square-mile area that includes much of the University of Utah campus and downtown Salt Lake City.

POWDER and a complementary test bed in New York City were announced today as the United States’ first wireless test networks large enough to cover a small U.S. city. They are funded by the National Science Foundation (NSF) and industry consortium partners in NSF’s Platforms for Advanced Wireless Research (PAWR) effort.

“The biggest challenge for the future of wireless communications is not data speeds but scalability, in every sense,” said RENEW project leader Ashutosh Sabharwal, professor of electrical and computer engineering at Rice. “There will be order-of-magnitude increases in network nodes, number of users and types of applications. And these networks will have to be everything to everybody. They’ll be the backbone connection not just for our smartphones, but for self-driving cars; the lights, water mains and buildings of smart cities; and every imaginable sensor and gadget.”

Surya Paruchuri and Lev Shuhatovich assemble a massive MIMO base station

Surya Paruchuri (left) and Lev Shuhatovich of Skylark Wireless assemble a multi-antenna “massive MIMO” base station at Rice University’s Center for Multimedia Communications. (Photo by Doni Soward/Rice University)

For example, market intelligence firm IDC expects that by 2025 more than 152,000 internet-enabled devices will go online each minute. Many of those devices will connect wirelessly, and the exponential growth in demand for wireless data contrasts with the finite availability of radio spectrum. Rice researchers on the RENEW team have spent years studying ways to serve more data to more devices with available spectrum.

RENEW will incorporate a number of technologies developed at Rice’s Center for Multimedia Communications, Texas Southern University’s Virtual and Remote Laboratory and the University of Michigan’s MobiLab. These include “massive MIMO,” an industry acronym for “multi-user, multiple-input, multiple-output,” a transmission scheme that uses base stations with hundreds of antennas to simultaneously serve many users on the same frequency. RENEW will leverage Argos, a fully programmable massive MIMO system developed at Rice and commercialized by Rice spinoff company Skylark Wireless.

“RENEW is the wireless platform that will be used to invent the future,” Sabharwal said. “We’re looking forward to working with our partners at the University of Utah’s POWDER test facility to get the network up and running as soon as possible.”

The RENEW team

The RENEW team includes (from left) Xuemin Chen and Wei Wayne Li, both of Texas Southern University, Edward Knightly, Joe Cavallaro, Rahman Doost-Mohammady, Lin Zhong, William Deigaard and Ashutosh Sabharwal, all of Rice. (Photo by Doni Soward/Rice University)

PAWR is a $100 million effort launched in 2016 as part of the Advanced Wireless Research Initiative. The design, development, deployment and initial operations of PAWR research platforms are being overseen by the PAWR Project Office, which is funded by NSF and run by US Ignite Inc. and Northeastern University.

NSF has committed $50 million over the next seven years to the PAWR effort, and the PAWR Industry Consortium, which includes equipment vendors, device manufacturers and wireless carriers, has committed $50 million in cash and in-kind contributions that include equipment, expertise and human resources.

The RENEW team includes co-principal investigators Joe Cavallaro, William Deigaard, Edward Knightly and Lin Zhong, all of Rice; Xuemin Chen and Wei Wayne Li, both of Texas Southern; and Morley Mao of the University of Michigan.

More information is available at renew.rice.edu.

-30-

High-resolution IMAGES are available for download at:

http://news.rice.edu/files/2018/04/0409_RENEW-mimo-lg-2o6bbxa.jpg
CAPTION: The POWDER test bed in Salt Lake City will include multi-user, multiple-input, multiple-output technology, or massive MIMO, like this 80-antenna base station developed at Rice University. (Photo by R. Doost-Mohammady/Rice University)

http://news.rice.edu/files/2018/04/0409_RENEW-wk249-lg-upumun.jpg
CAPTION: Surya Paruchuri (left) and Lev Shuhatovich of Skylark Wireless assemble a multi-antenna “massive MIMO” base station at Rice University’s Center for Multimedia Communications. (Photo by Doni Soward/Rice University)

http://news.rice.edu/files/2018/04/0409_RENEW-gp302-lg-1nzvkev.jpg
CAPTION: The RENEW team includes (from left) Xuemin Chen and Wei Wayne Li, both of Texas Southern University, Edward Knightly, Joe Cavallaro, Rahman Doost-Mohammady, Lin Zhong, William Deigaard and Ashutosh Sabharwal, all of Rice. (Photo by Doni Soward/Rice University)

Other wireless research stories from Rice:

Rice wins $2.4M to study many-antenna wireless — Nov. 24, 2015
http://news.rice.edu/2015/11/24/rice-wins-2-4m-to-study-many-antenna-wireless-2/

Rice tests wireless data delivery over active TV channels — July 13, 2015
http://news.rice.edu/2015/07/13/rice-tests-wireless-data-delivery-over-active-tv-channels/

How to feed data-hungry mobile devices? Use more antennas — Aug. 23, 2012
http://news.rice.edu/2012/08/23/how-to-feed-data-hungry-mobile-devices-use-more-antennas/

Rice breakthrough could double wireless capacity with no new towers — Sept. 7, 2011
http://news.rice.edu/2011/09/07/rice-breakthrough-could-double-wireless-capacity-with-no-new-towers-2/

Wireless at WARP speed — Jan. 29, 2009
http://news.rice.edu/2009/01/29/wireless-at-warp-speed/

 

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview.

About Jade Boyd

Jade Boyd is science editor and associate director of news and media relations in Rice University's Office of Public Affairs.