Molybdenum disulfide holds promise for light absorption

Rice researchers probe light-capturing properties of atomically thin MoS2

Mechanics know molybdenum disulfide (MoS2) as a useful lubricant in aircraft and motorcycle engines and in the CV and universal joints of trucks and automobiles. Rice University engineering researcher Isabell Thomann knows it as a remarkably light-absorbent substance that holds promise for the development of energy-efficient optoelectronic and photocatalytic devices.

Hossein Robatjazi, Shah Mohammad Bahauddin and Isabell Thomann

(Clockwise from top left) Hossein Robatjazi, Shah Mohammad Bahauddin and Isabell Thomann (Photo by Jeff Fitlow/Rice University)

“Basically, we want to understand how much light can be confined in an atomically thin semiconductor monolayer of MoS2,” said Thomann, assistant professor of electrical and computer engineering and of materials science and nanoengineering and of chemistry. “By using simple strategies, we were able to absorb 35 to 37 percent of the incident light in the 400- to 700-nanometer wavelength range, in a layer that is only 0.7 nanometers thick.”

Thomann and Rice graduate students Shah Mohammad Bahauddin and Hossein Robatjazi have recounted their findings in a paper titled “Broadband Absorption Engineering To Enhance Light Absorption in Monolayer MoS2,” which was recently published in the American Chemical Society journal ACS Photonics. The research has many applications, including development of efficient and inexpensive photovoltaic solar panels.

molybdenum disulfide graphic

Using a layer of molybdenum disulfide that was less than one nanometer thick, researchers in Rice University’s Thomann lab were able to design a system that absorbed more than 35 percent of incident light in the 400- to 700-nanometer wavelength range. (Image by Thomann Group/Rice University)

“Squeezing light into these extremely thin layers and extracting the generated charge carriers is an important problem in the field of two-dimensional materials,” she said. “That’s because monolayers of 2-D materials have different electronic and catalytic properties from their bulk or multilayer counterparts.”

Thomann and her team used a combination of numerical simulations, analytical models and experimental optical characterizations. Using three-dimensional electromagnetic simulations, they found that light absorption was enhanced 5.9 times compared with using MoS2 on a sapphire substrate.

“If light absorption in these materials was perfect, we’d be able to create all sorts of energy-efficient optoelectronic and photocatalytic devices. That’s the problem we’re trying to solve,” Thomann said.

She is pleased with her lab’s progress but concedes that much work remains to be done. “The goal, of course, is 100 percent absorption, and we’re not there yet.”

The research was supported by the National Science Foundation and the Welch Foundation.

–Patrick Kurp is a science writer in the George R. Brown School of Engineering

About Special to Rice News

The Rice News is produced weekly by the Office of Public Affairs at Rice University.