New password in a heartbeat

David Ruth
713-348-6327
david@rice.edu

Mike Williams
713-348-6728
mikewilliams@rice.edu

New password in a heartbeat

Rice University researchers propose touch-to-access security for implanted devices 

HOUSTON – (Sept. 23, 2013) – Pacemakers, insulin pumps, defibrillators and other implantable medical devices often have wireless capabilities that allow emergency workers to monitor patients. But these devices have a potential downside: They can be hacked.

Researchers at Rice University have come up with a secure way to dramatically cut the risk that an implanted medical device (IMD) could be altered remotely without authorization.

Their technology would use the patient’s own heartbeat as a kind of password that could only be accessed through touch.

Rice electrical and computer engineer Farinaz Koushanfar and graduate student Masoud Rostami will present Heart-to-Heart, an authentication system for IMDs, at the Association for Computing Machinery’s Conference on Computer and Communications Security in Berlin in November. They developed the technology with Ari Juels, former chief scientist at RSA Laboratories, a security company in Cambridge, Mass.

IMDs generally lack the kind of password security found on a home Wi-Fi router because emergency medical technicians often need quick access to the information the devices store to save a life, Rostami said. But that leaves the IMDs open to attack.

“If you have a device inside your body, a person could walk by, push a button and violate your privacy, even give you a shock,” he said. “He could make (an insulin pump) inject insulin or update the software of your pacemaker. But our proposed solution forces anybody who wants to read the device to touch you.”

The system would require software in the IMD to talk to the “touch” device, called the programmer. When a medical technician touches the patient, the programmer would pick up an electrocardiogram (EKG) signature from the beating heart. The internal and external devices would compare minute details of the EKG and execute a “handshake.” If signals gathered by both at the same instant match, they become the password that grants the external device access.

“The signal from your heartbeat is different every second, so the password is different each time,” Rostami said. “You can’t use it even a minute later.”

He compared the EKG to a chart of a financial stock. “We’re looking at the minutia,” Rostami said. “If you zoom in on a stock, it ticks up and it ticks down every microsecond. Those fine details are the byproduct of a very complex system and they can’t be predicted.”

A human heartbeat is the same, he said. It seems steady, but on closer view every beat has unique characteristics that can be read and matched. “We treat your heart as if it were a random number generator,” he said.

The system could potentially be used with the millions of IMDs already in use, Koushanfar said. “To our knowledge, this is the first fully secure solution that has small overhead and can work with legacy systems,” she said. “Like any device that has wireless access, we can simply update the software.”

Koushanfar noted the software would require very little of an IMD’s precious power, unlike other suggested secure solutions that require computationally intensive – and battery draining – cryptography. “We’re hopeful,” she said. “We think everything here is a practical technology.”

Implementation would require cooperation with device manufacturers who, Koushanfar said, hold their valuable, proprietary secrets very close to the chest, as well as approval by the Food and Drug Administration.

But the time to pursue IMD security is here, Rostami insisted. “People will have more implantable devices, not fewer,” he said. “We already have devices for the heart and insulin pumps, and now researchers are talking about putting neuron stimulators inside the brain. We should make sure all these things are secure.”

The Office of Naval Research and Army Research Office supported the research.

-30-

Read the paper at www.aceslab.org/sites/default/files/H2H.pdf

Follow Rice News and Media Relations via Twitter @RiceUNews

Related Materials:

Adaptive Computing and Embedded Systems Laboratory at Rice: http://www.aceslab.org

Images for download:

 

 

 

 

https://news2.rice.edu/files/2013/09/0913_SECURITY-1-web.jpg

Farinaz Koushanfar, left, an associate professor of electrical and computer engineering at Rice University, and graduate student Masoud Rostami have created a system to secure implantable medical devices like pacemakers and insulin pumps from wireless attacks. (Credit: Jeff Fitlow/Rice University)

 

 

 

 

https://news2.rice.edu/files/2013/09/0913_SECURITY-2.jpg

Rice University engineers have created a system to secure wireless implantable medical devices like pacemakers and insulin pumps. Their system requires the medical worker to touch the patient with a programmer device to gain access to information on the implant. The patient’s unique heartbeat serves as a temporary password. (Credit: Masoud Rostami/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for “best value” among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/AboutRiceU.

If you do not wish to receive news releases from Rice University, reply to this email and write “unsubscribe” in the subject line.  Office of News and Media Relations – MS 300, Rice University, 6100 Main St., Houston, TX 77005

 

 

 

New password in a heartbeat

Rice University researchers propose touch-to-access security for implanted devices

About Mike Williams

Mike Williams is a senior media relations specialist in Rice University's Office of Public Affairs.