‘Vicious cycle’ shields, spreads cancer cells

David Ruth
713-348-6327
david@rice.edu

Mike Williams
713-348-6728
mikewilliams@rice.edu

‘Vicious cycle’ shields, spreads cancer cells

Rice U. researchers find mucus-regulating protein receptors out of control in uterine, pancreatic cancers 

HOUSTON – (Sept. 16, 2013) – A “vicious cycle” produces mucus that protects uterine and pancreatic cancer cells and promotes their proliferation, according to researchers at Rice University. The researchers offer hope for a therapeutic solution.

They found that protein receptors on the surface of cancer cells go into overdrive to stimulate the production of MUC1, a glycoprotein that forms mucin, aka mucus. It covers the exposed tips of the elongated epithelial cells that coat internal organs like lungs, stomachs and intestines to protect them from infection.

But when associated with cancer cells, these slippery agents do their jobs too well. They cover the cells completely, help them metastasize and protect them from attack by chemotherapy and the immune system.

Details of the new work led by biochemist Daniel Carson, dean of Rice’s Wiess School of Natural Sciences, appear in the Journal of Cellular Biochemistry.

In the paper, Carson, lead author Neeraja Dharmaraj, a postdoctoral researcher, and graduate student Brian Engel described MUC1 overexpression as particularly insidious not only for the way it protects tumor cells and promotes metastasis, but also because the cells create a feedback loop in which epidermal growth factor receptors (EGFR) and MUC1 interact to promote each other.

Carson described EGFR as a powerful transmembrane protein that stimulates normal cell growth, proliferation and differentiation. “What hadn’t been considered is whether this activated receptor might actually promote the expression of MUC1, which would then further elevate the levels of EGFR and create this vicious cycle.

“That’s the question we asked, and the answer is ‘yes,’” he said.

Carson compared mucus to Teflon. “Things don’t stick to it easily, which is normally what you want. It’s a primary barrier that keeps nasty stuff like pathogenic bacteria and viruses from getting into your cells,” he said.

But cancer cells “subvert systems and find ways to get out of control,” he said. “They auto-activate EGFR by making their own growth factor ligands, for example, or mutating the receptor so it doesn’t require the ligand anymore. It’s always on.”

Mucin proteins can then cover entire surface of a cell. “That lets (the cell) detach and move away from the site of a primary tumor,” while still preventing contact with immune system cells and cytotoxins that could otherwise kill cancer cells, Carson said.

Hope comes in the form of a controversial drug, rosiglitazone, in the thiazolidinedione class of medications used in diabetes treatment, he said. The drug is suspected of causing heart problems over long-term use by diabetes patients. But tests on cancer cell lines at Rice found that it effectively attenuates the activation of EGFR and reduces MUC1 expression. That could provide a way to weaken the mucus shield.

“Chronic use of rosiglitazone can produce heart problems in a subset of patients, but if you’re dying of pancreatic cancer, you’re not worried about the long term,” Carson said.  ”If you can reduce mucin levels in just a few days by using these drugs, they might make cancer cells easier to kill by established methods.”

He said more work is required to see if rosiglitazone or some variant is suitable for trials. “We think it’s best to understand all the effects,” he said. “That might give us a rational way to modify these compounds, to avoid unwanted side effects and focus on what we want them to do.”

Carson is the Schlumberger Chair of Advanced Studies and Research and a professor of biochemistry and cell biology with a joint appointment in the Department of Biochemistry and Molecular Biology at the University of Texas MD Anderson Cancer Center. He also is Rice’s vice provost for strategic partnerships.

The National Institutes of Health and Rice University supported the research.

-30-

Read the abstract at http://onlinelibrary.wiley.com/doi/10.1002/jcb.24580/abstract

Follow Rice News and Media Relations via Twitter @RiceUNews

Related Materials:

Daniel Carson bio: http://biochem.rice.edu/facultydetail.aspx?riceid=184636

Images for download:

 

 

 

http://news.rice.edu/wp-content/uploads/2013/09/0913_CANCER-1-web.jpg

The presence of rosiglitazone may mitigate the mucus-producing cycle that protects uterine and pancreatic cancer cells and promotes metastasis, say researchers at Rice University. Normal cells produce MUC1, a glycoprotein that forms mucus, necessary to protect healthy cells. But in cancer cells, aberrant cell signaling allows EGFRs and MUC1 stimulate each other, allowing mucus to cover and protect the entire cell. “P” indicates phosphorylation, a step in the activation of EGFR required for increasing mucus levels. (Graphic by Brian Engel/Rice University)

 

 

 

 

http://news.rice.edu/wp-content/uploads/2013/09/0913_CANCER-2-web.jpg

Rice University researchers have found a “vicious cycle” that protects uterine and pancreatic cancer cells. From left, Daniel Carson, dean of the Wiess School of Natural Sciences, postdoctoral researcher Neeraja Dharmaraj and graduate student Brian Engel. (Credit: Jeff Fitlow/Rice University)

 

 

 

 

http://news.rice.edu/wp-content/uploads/2013/09/0913_CANDER-3-web.jpg

Research at Rice University by Neeraja Dharmaraj, left, and Brian Engel discovered a “vicious cycle” that promotes the growth of mucus on uterine and pancreatic cancer cells, protecting them and helping them metastasize. (Credit: Jeff Fitlow/Rice University)

 

 

 

 

http://news.rice.edu/wp-content/uploads/2013/09/0913_CANDER-4-web.jpg

A Rice University study of uterine and pancreatic cancer cell lines found a “vicious cycle” promoted the growth of mucus on the cells, protecting them and helping them metastasize. They also found a drug once commonly used to treat diabetes, rosiglitazone, may help stop the cycle. (Credit: Jeff Fitlow/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for “best value” among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/AboutRiceU.

About Mike Williams

Mike Williams is a senior media relations specialist in Rice University's Office of Public Affairs.