Beyond Traditional Borders wins Science magazine’s IBI Prize

CONTACTS:
David Ruth
713-348-6327
david@rice.edu

Jade Boyd
713-348-6778
jadeboyd@rice.edu

Beyond Traditional Borders wins Science magazine’s IBI Prize

Rice University’s hands-on approach for global health engineering chosen as model for nation

HOUSTON — (April 26, 2012) — Science magazine has awarded a Science Prize for Inquiry-Based Instruction (IBI) to Rice University’s hands-on engineering education program Beyond Traditional Borders (BTB) as a model for other schools. In the program’s first six years, more than 10 percent of Rice undergraduates have participated in BTB and produced 58 low-cost health technologies, including two that have already been broadly distributed at a national level.

Rebecca Richards-Kortum

Richards-Kortum

As an IBI prize winner, the BTB program is highlighted in Science this week in an essay aimed at spreading the word about BTB and showing other educators how to replicate the program on their campuses.

“The essence of the BTB approach to learning is captured in the Haitian saying, ‘You don’t learn to swim in the library; you learn to swim in the river,’” said BTB founder Rebecca Richards-Kortum, Rice’s Stanley C. Moore Professor of Bioengineering.

BTB, which was launched in 2006 with a $2.2 million grant from the Howard Hughes Medical Institute (HHMI) through its Undergraduate Science Education Program, challenges students to come up with practical solutions to real-world health care problems in the developing world. It uses the engineering design method to teach students from all disciplines to meet global health challenges.

BTB has captured the imagination of Rice’s students in a remarkably short time. More than 10 percent of Rice undergraduates — including many nonengineering majors — have taken a BTB course. Thanks to HHMI funding, which was renewed in 2010, approximately 12 Rice students travel abroad each summer to implement their designs in partnership with physicians in local clinics in Africa and Latin America.

BTB intern on bicycle

Exceptional BTB students travel to the developing world to implement their designs -- like this Lab-in-a-Backpack -- in partnership with health-care professionals.

“Today students really want to make a difference and have impact, and BTB provides the possibility for incredible experiences for the students that decide to take on real-world challenges,” said Ned Thomas, dean of Rice’s George R. Brown School of Engineering. “Professor Richards-Kortum and her team find critically important global health problems, and the students solve them and bring working prototypes to the field, refine their designs and in some cases go on to deploy thousands of actual medical devices.”

Notable BTB technologies include:

  • A hand-powered centrifuge for laboratory blood testing constructed for $35 using a salad spinner and found to be as accurate as a commercially available model costing 10 times more.
  • LED-based phototherapy lights to treat neonatal jaundice made for less than $100. A clinical study in Guatemala found the low-cost lights were as effective in treating neonatal hyperbilirubinemia as conventional phototherapy lights that cost thousands of dollars.
  • A portable, battery-operated fluorescence microscope made for $240. In a side-by-side comparison with a laboratory-grade instrument, the low-cost microscope proved as effective at detecting tuberculosis-infected sputum samples in more than 98 percent of samples.
  • The Lab-in-a-Backpack, an ultraportable backpack containing a microscope, centrifuge, pulse oximeter, otoscope and other clinical tools. Lab-in-a-Backpack was deployed countrywide by Ecuador’s Ministry of Health.
  • “DoseRight” syringe clips, which fit into the barrel of an oral syringe to ensure accurate dosing of HIV/AIDS medication. Swaziland health officials oversaw the countrywide distribution last year of approximately 214,000 DoseRight syringe clips.
  • Nurse with baby

    A nurse monitors an infant that is breathing with assistance from a BTB-created bubble CPAP device.

    A low-cost, student-designed “continuous positive airway pressure,” or bubble CPAP device, which assists babies in respiratory distress. This technology was refined with support from the National Collegiate Inventors and Innovators Alliance and the U.S. Agency for International Development. A clinical trial is under way in Malawi.

The essay highlighting the BTB program in this week’s issue of Science was written by Richards-Kortum, Maria Oden, professor in the practice of engineering and director of Rice’s Oshman Engineering Design Kitchen, and Lauren Vestewig Gray, executive director of Rice 360°: Institute for Global Health Technologies.

“We have discovered that giving students the opportunity to solve real global health problems not only creates leaders for tomorrow’s global health technology workforce, but also produces technologies with the potential to revolutionize health care delivery in poor settings,” they wrote.

BTB has already been replicated in a number of high school classrooms. The curriculum has been adapted for high school students, and the Texas Education Agency has approved the curriculum to count toward the state’s graduation requirement in science. Since 2007, more than 2,000 Houston-area high school students have participated in courses based on this curriculum.

 ###

RELATED MATERIALS:

The essay by Richards-Kortum, Oden and Gray is available online from Science at:
http://www.sciencemag.org/content/336/6080/430.summary

For more information about BTB, visit:
http://www.beyondtraditionalborders.rice.edu/

For more information about Science’s IBI Prize, visit:
http://www.sciencemag.org/site/feature/data/prizes/inquiry/

High school course materials are freely available online at:
http://www.owlnet.rice.edu/~bioe301/kortum/index.html

High-resolution images are available for download at:

http://news.rice.edu/wp-content/uploads/2012/04/0423_Z_on_bike.jpg
CAPTION: Exceptional BTB students travel to the developing world to implement their designs — like this Lab-in-a-Backpack — in partnership with health-care professionals.
CREDIT: Casey Nesbit/Rice 360°

http://news.rice.edu/wp-content/uploads/2012/04/Nurse-Malawi.jpg
CAPTION: A nurse monitors an infant that is breathing with assistance from a BTB-created bubble CPAP device.
CREDIT: Jocelyn Brown/Rice 360°

BTB-related VIDEOs are available at:

Rice 360º students develop dosing clips to curb HIV in Africa
http://www.youtube.com/watch?v=k_yuXEvLOrk
A low-cost solution for neonatal apnea in the developing world
http://www.youtube.com/watch?v=b3xBaa3VN9c
Rice’s Baby Bubbler
http://www.youtube.com/watch?v=JBgdH33uVkc
Rice students’ Sally Centrifuge could help diagnose anemia globally
http://www.youtube.com/watch?v=COOIjVGPCt4

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom.” With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for “best value” among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to www.rice.edu/nationalmedia/Rice.pdf.

About Jade Boyd

Jade Boyd is science editor and associate director of news and media relations in Rice University's Office of Public Affairs.